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ABSTRACT

Henrotay, P., 1981, Topographic effects on solitary Rossby waves. Dyn. Atmos, Oceans,
G: 29—47.

The model for baroelinie solitary waves previously described by Flierl is developed to
include effects of bottom variations.

Topographic disturbances are shown to act, through their first and second derivatives,
on both the phase speed correction and the maximum horizontal amplitude,

The combined effects of mean shear flow steepening and bottom variations are con-
sidered; an equation is derived, showing the relative importance of each effect.

1. INTRODUCTION

Recent studies in planetary waves dynamics (e.g., Larichev and Reznik,
1976; Redekopp, 1977; Clarke, 1971; Flierl, 1979; Malanotte Rizzoli, 1980;
Malanotte Rizzoli and Hendershott, 1980) have shown the possibility of the
existence of isolated disturbances (‘solitary wawves'), both in the atmosphere
and ocean.

These solitary solutions of the quasigeostrophic equations appear to have
some exciting characteristics, particularly suited to the description of meso-
scale eddies or frontal eddies like Gulf Stream rings.

One of the formative studies of solitary disturbances is that of Flierl
(1979): his model uses the §-plane equations in the continuocusly stratified
form and reveals the existence of radially symmetrie, baroclinic solutions,
which is most desirable for applications to oceanic mesoscale eddies and syn-
optic weather systems. It requires a mean shear flow far from the isolated
wave: the eddy is steepened by its interaction with the shear; the potential
vorticity—stream function relationship is continuous.

Nevertheless, Flierl’s model (rigid lid and flat bottom asswmnptions) neg-
lects topographic effects, which can support solitary waves (Clarke, 1971,
Malanotte Rizzoli and Hendershott, 1980). The joint effect of curved topo-
graphy and interaction with a mean flow is worth investigating. The purpose
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here is to extend Flierl’s results in order to include effects of bottom varia-
tions.

In Section 2, we recall the set of equations previously obtained and note
the change in the boundary conditions introduced by our varying bottom
hypothesis. In Section 3, we consider the case of pure topographic effects
(no mean flow) and discover that solitary disturbances with radial symmetry
are possible. The dependence of the phase speed on the bottom slope is
shown, In Section 4, the influence of an arbitrary mean flow is considered.
In Section 5, a solution corresponding to the case of a large scale mean flow
is deduced, and compared to Flierl’s result. A general equation is obtained,
which shows the relative effects of the mean flow and of the depth variation.
An example is provided, which shows that the two effects may be coopera-
tive or destructive,

2. GOVERNING EQUATIONS
The quasigeostrophie, f-plane equations in the continuously stratified

form can be written as follows (conservation of quasigeostrophic potential
vorticity)

d 2-I+ + +afia

AL e st =0
G| T R e
where

Yix, 3, 2, t)  is the stream function

alu) is the eastward distance (velocity)

() is the northward distance (velocity)

z{w) is the upward distance (velocity)

NZ3(z) is the specified Brunt—Viiisild frequency

fo + By is the Coriolis parameter with N—8 variation
R

v is the horizontal Laplacian operator

The fluid is contained by a rigid horizontal upper surface and by an irregular
lower surface. The boundary conditions are (Flierl, 1978)

tw=0 atz=10
w=dJ, b) atz=—H

where H is the mean depth, and b(x, ¥) is the bottom deviation (the true
bottom lies at z = —H + b). The conditions can also be written
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3t Bz +J(w, G ) 0 at z H

Following Flier]l {(1979), we rewrite these equations for motions which trans-
late steadily in the x-direction. We only allow undisturbed zonal mean flows
Uy, 2), so we have

ox
Wix, ¥, 2, t) =Xlx —et, ¥, 2)
Substitution in previously obtained equations leads to

i W A )

+ 2o o B0

J(x cy, VX + fy 35 N% 22 X 0
ax

+ )= =
J(}C oV, az) 0 atz=10
J( + ¢ a-—x+N—2b)—{] atz =—H

X Y ie T

Integrating these equations by introducing the potential vorticity functional
PiZ, z) and surface functionals G4(Z) and G,(Z), the following set of equa-
tions is obtained (only the third equation differs from Flierl’s eq. 2.1)

9 a
?2x+5‘§£x+ﬁy=ﬁx + ¢y, 2)
Z—’: = Go(X + €y) abs=0 (2.1)
% NE
E=—f—b{y}+61{x+cy} atz=—H
o

We look for the evolution of a perturbation superimposed on a zonal mean
flow W

ol
x=W¥+g, §=—UI}'12}
The mean flow satisfies

a2 f§av,

a}r'z bz NZ Az B_]J=P[‘-P+C}'. Z}
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.2 Go(lr + cy) atz=10 (2.2)
bz

av N? -

a——fnf}+(}1[‘¥+c}r} atz=—H

while the perturbation v is described by

?2{‘04_1&@:P{w+w+c:‘v,z]—f:’{q’+c}', z)

Bz N® az
:fj=Gﬂ{:p+‘l‘+cy}—G[,{\If+cy} atz=10 (2.3)
dy
E=G1{up+‘-lf+cy]—l‘31{"-lf+cy} at z = —H

We require (isolated disturbance)
w0 as lxl = 4=

The nonlinear PDS (2.3) is identical to that obtained by Flierl; the effect of
the bottom variations appears implicitly through the functional G,.

The knowledge of the mean flow ¥ and of b allows us to construct the
functionals P, 7y and @. The nonlinear PDS (2.3) can then be solved; it is in
fact an eigenvalue problem (the eigenfunction is ¢ and the eigenvalue is ¢).
Flier]l (1979) shows that it is possible to find analytic approximations of ¢
and ¢ under simplifying assumptions, introducing balances between linear and
nondispersive effects, and between nonlinear and dispersive effects.

To achieve these balances, we impose:

Weak dispersion: x and v scales large compared to the Rossby radius of defor-
mation.

Weak nonlinearity {due to steepening effect of the mean flow): this is achieved
by making the vorticity and surface functionals nearly linear

P(Z, z)~ A(z) Z + B(Z, z) with B<< AZ
G(Z) ~ CZ + D(Z) with D << CZ

3. FURE TOPOGRAPHIC EFFECTS

The fact that curved topography can support solitary waves is not new
{Clarke, 1971; Malanotte Rizzoli and Hendershott, 1980; Malanotte Rizzoli,
1980). The last reference clearly shows all basic features associated with plane-
tary solitary waves over variable relief. We choose to discuss the case of pure
topographic effects because of its simplicity. The set of eqs. 2.2 and 2.3
reduces to .

N
0 = Goley), f_ub = Giley)
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and thus

Vi + afzaw:w

dz N? az c

aj=ﬂ atz=10
iz

e Gyptey)—Galey)  atz=—H

We suppose that the bottom variation is given by

L

, b
bly) = b'(0)y +5(0) y2

(the guadratic term must be retained to introduce the desirable nonlinearity
in our problem). The boundary condition at the bottom may be written

z: N0y +a"{{:-) atz=—H

We now choose the scale large enough so that

3 f2ap

aNE'

172l << |—

and introduce zero- and first-order approximations to the solitary wave
streamfunction and the phase speed.
Lowest order balance (eigenvalue problem for ¢°)

3 5 ayY°_ B

az N? az c‘”ﬂ

aai:-ﬂ g0 (3.1)
ﬂ L

E&___%@@@u atz=—H

The difference between our situation and previous analyses for a flat-
bottom ocean is that the phase speed, to be determined, occurs both in the
differential equation and in the boundary conditions. Some interesting effects
are to be expected.

First order balance

? fa @ i
2D+ o -
vy aszaz‘P c?

o O (3.2)

iﬂl_'
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%5 atz=0

iz

dg' _ N*[b'(0) "{_Crl ] o

Az fﬂ[ ;I‘r b{ﬂ] 2'100 2{ }2 ] at z -H

From (3.1), we deduce

0o, ¥, 2) =Y(x, ¥) F(2) (3.3)

and we may impose

1 0
= FYz)dz=1
L pa)

—H

We substitute (3.3) in (3.2), multiply by (1/H) F(z) and integrate over
depth; the use of (3.1) and (3.2) enables us to eliminate all the surface terms

generated,
We finally obtain

1 ! " = P
T o[ 00 g )] Lo O P

H 2[(.'0}2 ?)!

(3.4)

When the disturbance remains isolated we find an eigenvalue problem
(eigenvalue is ¢' and eigenfunction is 4); if a solution exists, the existence of
solitary disturbances due to topographic variations is possible.

Equation 3.4 is the analog of eq. 3.4 in Flierl's article (horizontal shear
case) and is a particular form of a wide class of equations, which we can
write as

Viy+ Ay + By =0 (3.5)
(A and B are parameters; we shall see in Section 5 how they depend on flow
and bottom characteristics).

We shall look for radially symmetric solutions which approach zero as
r— e with all their derivatives in a monotonous way (this imposes A < 0).
We therefore put

Qir) = K% G(x)
with
x=v —Ar

which gives

dzg 1dG
r:i.vc2 x dx
G(i0)=1

—G—KG*=0 (3.6)
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Fig. 1. Radial dependence of the dimensionless stream funetion.

dG
E{ﬂ] =)
The set of eqs. 3.6 is in fact an eigenvalue problem. The function G(x) can
be found numerically by standard methods. We find
KE=—-230
The radial dependence of the stream function G{x) is shown by Figs. 1 and 2.

This result was first obtained by Flierl (1979). The presentation given above,
however, seems less confused and more general to the author, The maximum

0

Fig. 2. Particle speed within the eddy (with reversed sign).
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amplitude of the solitary wave is

A
0)=—22391~=
Y(0) 2
Note that if B is positive, the azimuthal currents are clockwise (anticyclonic
eddy) and if B is negative, the azimuthal currents are anticlockwise (evclonic
eddy). Clearly the characteristic eddy size () can be related to A by

=1 —A (3.8)

Given the characteristic size [ and the first and second derivatives of the
ocean depth, we are able:

(1) to compute the phase speed ¢ from the eigenvalue problem (3.1);

{2) to compute the value of B from (3.4);

(3) to deduce the first order correction ¢! to the phase speed; and

(4) to express the maximum amplitude q/(0).

From an immediate inspection of eqs. 3.4, 3.7 and 3.8, we may already
deduce the following interesting features.

The shape and the extension of the solitary eddy are uniquely related to
the second derivative of the depth profile, the amplitudeqy(0) being inversely
proportional to it; on the other hand, the sign of the second derivative condi-
tions the cyclonic or anticyelonic character of the eddy.

The phase speed depends only on the first derivative (the bottom shape).
We see that for b'(0) > 0 (shallow water to the north) the g effect is reinforced
which will augment the phase speed; for b'(0), the situation is reversed. These
results are in accordance with those obtained by Rhines (1970) for linear
waves.

We now present two illustrating examples,

(1) b'(0) = 0+ b"(0) and N? = ¢'*
It is straightforward to obtain

(3.7)

c® =—fR? with B = HN/7f, (the Rossby radius of deformation)
F(z) =v2 cos nz/H
5 fob"(0) V2
H(c")?
el = ORI

2.391 (c)*H

P fov/26"(0)

The phase speed thus appears unaffected by the depth profile (compare
with the result of Flierl, 1979, p. 23); the eddy travels westward. It appears
that we will observe a cyclonic eddy if b" (0) is negative (the eddy travels over
a hill) and an anticyclonic eddy if b" (0) is positive (the eddy travels over a
depression).

Y(0) =




a7

If we take H=4000m, N=2x 102 g} f,=5x10"%s}, g=2x 10711
m sl b"{0) =107 m™, and ! = 200 km, we obtain
E =51 km,
®=—bemst,
Q0)=91% 103 m2st
The last expression enables us to calculate the typical speed within the eddy
Y(0) = Uyl
and hence
Uy =045ms?
which is a realistic speed for the description of certain observed eddies.

(2) b'(0) # 0+ b"(0) and N? = ¢t

We shall now concentrate our attention on the effects of the bottom varia-
tion on the phase speed. Two cases must be considered.

(a) ¢® < 0: westward propagation
The eigenvalue problem (3.1) is easily shown to reduce to

cl== i (3.9)

A remark is necessary here: our approximation is only valid if

af2a
[.:"T;E.% =%>> |92l

This may be rewritten

T
H2N? I
or (using the Rossby radius of deformation)

R2
m2>> ﬂzTg

This last expression indicates that we must be careful in our analysis: values
of m that are too small must be rejected (the phase speed ¢ would increase
— in modulus — without limit, which is unacceptable).

Therefore, we shall only retain values of m, solutions of (3.9), but belong-
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Fig. 3. The zero-order dimensionless phase speed as a function of the dimensionless slope,

ing to [+7/2, 37/2]. Moreover, this ensures a continuous dependence of ¢° in
b'(0).

If we choose b'(0) = 107, keeping the same values as before for the other
parameters, we have (this shape corresponds to 100 m/100 km) m = 2.2, and
¢®=—11cm s (9.5 km day ™).

Figures 3 and 4 show the dependence of ¢ and ¢! on the bottom slope
b'(0). We observe that the phase speed is increased for a bottom sloping to
the north (the § effect is reinforced) while it is decreased for a bottom slop-
ing to the south; for b'(0) = 0, we recover the results of the previous example.

E I e A e s e e s g [ e e R e T S

'|r.'l|i'.1.f|9'R*

- ey G
-5 0 5 EF,,/.EH

Fig. 4. The first-order dimensionless phase speed as a function of the dimensionless slope,
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Note the strong influence of a positive slope: the speed can be multiplied by
a factor 4(c%) or 16(c"); the influence of a negative slope is much less impor-
tant.

(b) ¢® > 0: eastward propagation

The presence of a bottom slope can force solitary eddies to travel eastward;
mathematically, the origin of this lies in (3.1) where the eigenvalue ¢ appears
both in the equation and in the boundary conditions; from a physical point
of view, these solitary waves represent nonlinear extensions of Rhines’ linear
results (Rhines, 1970).

Equations 3.1 give

thm b'(0) 1
= 3.10
m fH (3.10)
eﬂ' =N2H2
fom*
For a solution to exist, we must have
' fl'.'l
(D)< 0 and 1B0)—=<1
(0) GH

i.e., the northern region must be that of deepest water and the slope must
not be too large.
With the parameters given above, this yields

15'(0)] < 1.6 X 1072 (= 160 m/100 km)

If the two conditions given above are not satisfied, no eastward propagation
will take place. In the present case, the vertical eigenfunction F(z) will be a
hyperbolic cosine, with argument mz/H.

4, INTERACTION WITH AN ARBITRARY FLOW

Our analysis being strictly parallel to that of Flierl (1979), we shall parti-
tion the mean flow streamfunction ¥, (* designates dimensional quantities)
into a part representing north—south invariant translation and a nonuniform
part. We also work with nondimensional equations, so we write

W, = —BR2LU(2) Y + AU LINAY, 2)

where

L is the mean flow scale

! is the eddy scale

AUy,  is the variation of the mean flow velocity over the eddy scale
Y=y z=2z.,/H

R is the Rossby radius of deformation
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It is also convenient to take
=fR2e
Pn{zuz )= ELP{errﬁﬂst zt."lH}
R2L,
Gz =L Gz proL)

bu(y.) = Hb(Y)

The eddy stream function ¢ needs a different scaling

= Uplp(x, ¥, 2) (=, p)=Hi (%, )

and several nondimensional parameters can be introduced

E=A Uul'rﬁR2
e = Up/PR*
= /L
v =R*P
and
§=N2H%*(f2R? (Burger’s number)
With this choice, eqgs. 2.2 and 2.3 become:

(1) For the mean flow (definition of functional P)¥ (Y, 2)

€ = 3 13U €efal
PlY(e—U)+5 =Y( ————)
[{c 1+5~1:,z] 2z S 9z ) 8\3z S 2z

(2) For the perturbation w(x, ¥, z)

132

1 €:
T e i E
Wt gz’ Eﬁ‘P[ES¢+{c U}&y+5"lf z}

—P[Sy[c— r +§-‘li-f,z]}

The boundary conditions are then:
(1) For the mean flow (definitions for G, and )
dU € ol

EQY _ b € %
i GD[Y[.:.- U]+E*If]

-

S, £ -
~opy) + 6, [vie - v)+ S

11: y§2 ‘p) (4.1)

(4.2)

atz=10

atz=—1 *¥
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(2) For the perturbation

gy 1 £ € -
gl \Gul:efr-p +{c—U) by + S‘tl*]— Gu[:ﬁy[c — [+ %\P”

(4.4)
atz=20
and a similar expression for G, atz = —1
w0 a8 kx|l = + e

In order to maintain a weak dispersion, strong eddies and small changes of
the mean flow across the eddy, we must impose

y<< 1, e~ 1fy,and & ~ 7*,

In Flierl’s work, two cases are considered: very large-scale mean flow
{# ~ ¥?) and intermediate-scale mean flow (§ ~ 7). We shall follow his ana-
lysis in the first case only and explain the effects of the topographic varia-
tions.

5. INFLUENCE OF A VERY LARGE MEAN FLOW AND BOTTOM EFFECTS (5 ~ 42)

We require that

auv _ a q"' at top and bottom

dz
= 3
lp{.ﬂ'rz} = U i ﬂ}' {0,3]

These assumptions do not appear to be so restrictive and simplify further
developments considerably.

This implies
Go=0= I¢ atz =0
bz
and (5.1)
€= _Sfo
s, = '_'tr' = —
GI[Y{C U]+5‘]f:| AL b Y) at z 1
It is then possible to develop the boundary constraints in powers of :
expression (4.4) becomes (correct to order )
a L
2= G610 v +16i fm—w# atz=—1 (5.2)
with
Gy(0)= dG‘(Z} for Z=10
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2
GU(0) = d—ﬁl{z;} for Z=0

We can evaluate ] and G by taking Y derivatives of (4.3); we obtain

oy =040 0 1
Sl AL T U(—1)
") = 1 Sfo[ d®b é ¥"(0,-1)
G(0
O e—oEnre ,BL[dY”{m —{0} T 1}} (B
O
{ =aYﬂ)

Expression (4.2), describing the evolution of ¢, can also be expressed in
powers of v; this expansion is not affected by the boundary conditions and
must be identical to that deduced by Flierl, so

8 1dp_1—[(d/dz)(1/S)(dU/dz)] %

2
+
e bz 8 oz ce—U

€€\1 of_1— [(d/dz)(1/S)(dU/d2)] & .,
ool L) g

, (2/22)(1/8)(2/92) ¥" (0, z}]
(c—U)*

The system of PDE obtained in (5.1), (5.2), (5.3) and (5.4) is now closed;
we solve it by introducing expansions in powers of v for ¢ and ¢

R 1 | 1
o ="+l + .,
ce=c” +9¢l + ...

(5.4)

and we have:
Lowest order balance: linear and dispersive

213 o _1—[(@/d)(1/S)AU/dz)] g

3z Sz O —U
0
B i) atz=0 (5.5)
az
da¢g® _ Sfo db(0) 1 0

atz=-—1

3z pL dy &—u-1)¥

This implies that

=q(x, ¥) F(z)
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with
d1d7 _1— [(d/dz)(1/S)dU/dz)] o
dz § dz & —U
dF 3
= = atz=0
dF _ foS db(0) i —
. D A (B ate =l
We are then free to impose
o]
[ Ferde=1
<1
Order 1 in 7y: nonlinear balance
o2 R T [{dfdz}(lfS]{dedz]] o
BN Y anesst T O—U
Sl s _EE_U) el [_d.}__,_iliw
(c®— 12 (1 dz S dz Y& Eﬁy £ (c®—1)2az 8 az\F (0,2)
RO ST - L e L
T (- U]3(1 dz S dz )‘I’ o, Z}} (5.6)
and
@—1 -0 0
_foSdb(0) 1 ( i ¢ n)
az BL a¥ d—UV¥ ~d—o¥ (2]
1S 1 [dzbm)_é_db(-:}] sy 1 ]e_a e
i BL [°—U(=1)]? L dY®* & dY Ll e —U(—1) )

The solvability condition follows from multiplying (5.6) by ¥ and integrat-
ing over depth; using the boundary conditions (5.7) we observe that the ¢
terms do not drop out, but generate additional terms, proportional to & and

G2,
Our final equation, to be compared to (4. 12] in Flierl, is
_,Il 1 db(0) [(dfdz}{lfS}(d Lridz)]
Vigtey BL[c® — U(—1)1* dy a2y f1 g (c®— U)? o
3 13 g )

L €€ £ ol 1= [(@/d)US)AU/dE)) G, 0280z
+—2‘y27:{‘ (c®—U)® A= (e® — U)? Jd’"
_foed 1 [d26(0) _ & db(0) ¥"(0,—1) \oa, 4]

8Ly [®— UL da¥? 5 dY o'— U{—l}]?{ 1}]'[:' i5.8)
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and
Y-=0 for lx| = +oo

Equation 5.8) shows the combined effects of topographic variations and
mean flow interaction. It appears to be quite complex in form, but we imme-
diately observe that it belongs to the class of equations defined by expression
(3.5); note, however, that (5.8) is already nondimensional.

On the other hand, the phase speed ¢” appears as eigenvalue of (5.5), the
exact analogue of expression (3.1), except for the presence of U, The remarks
that have been made in Section 3 remain valid here, in particular those con-
cerning the importance of the bottom slope.

If we wish to write down the radially symmetric solutions — the more
interesting ones — we can follow the same procedure as in Section 3 (provided
we stay within the limits of our assumptions):

(1) Given L (characteristic length of the mean flow), ! (characteristic length
of the eddy) and AU, (the variation of the mean flow on the eddy scale [), we
deduce €, § and 7.

{2) From (5.5) we obtain the adimensional phase speed ¢”; note that it
depends only on the bottom slope 5'{0) and on the north—south invariant
translation U(z).

We saw in Section 3 that a sloping bottom has a non-negligible effect on the
phase speed (recall the second example given in Section 3) and that new phen-
omena can take place (eastward propagation and boundary trapped buoyancy
Waves).

(3) From (5.7), it follows that

_|fo 1 db
BL [¢® — (—1)]2dY
1— [(d/dz)(1/S)(dU/dz)]

2
+f':]r _—_ic_:U}z—dz

1

—H0)F2(—1)

The same remarks hold for c'.
{4) Finally we obtain information on the particle speed within the eddy and on
om the sign of it (eyelonic or anticyclonic); we must impose

dz

213 -,
1% oo L (IS g 22 S ¥'(0,2)
J 0y’ =0y

oy J €0 1 e db ”{[] —1)

a%b
BL mw[ 705370 e 1]}?31—1}J=2.391

(5.9)
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This last expression gives the nondimensional amplitude €. A negative
value for the amplitude corresponds to a cyclonic eddy while a positive value
corresponds to an anticyclonic eddy; from e, the values of the particle speed
within the eddy can be obtained.

Expression (5.9) shows that ¢ depends in a complex way on the bottom
slope and on U, the north—south invariant part of the mean flow speed, but
also on the second derivative of the depth and on the nonuniform part of the
mean flow streamfunctions — two parameters which played no part in the
phase speed determination. We may partition the dependence of ¢ into three
parts:

(1) a first part representing pure mean flow effects [these are fully analyzed
in the work of Flierl (1979)];

{2) a second part describing the effect of depth variation only (in terms of
b") (these effects are examined in Section 3); and

{(3) a third part due to the interaction between the mean flow and the
bottom slope.

The presence of so great a number of parameters and functions in eqs. 5.8
and 5.9 makes them so complex that the perspective of a complete study
appears to be impracticable. The usefulness of writing them, however, appears
in the fact that they permit us to compare the relative influence of the bottom
and of the mean flow. Two extreme cases were presented: no bottom effect’
{see Flierl, 1979) and no mean flow effect (see Section 3 of this work). It
seems that both effects must often be taken into account to give a more phy-
sically acceptable solution to the problem of nonlinear eddies. The example
that follows is illustrative of the possible cooperative or non-cooperative
effects of a bottom slope and a mean shear flow. If we take

W = \:':'[Y} only (shear flow, barotropic)
U=0

P+0=0b" {bottom slope)

and

N2 £ pte

we shall encounter a nonlinear effect due to the shear flow, and a nonlinear
effect due to the bottom slope/mean flow interaction.

The coefficient multiplying the nonlinear term in (5.7) is quickly evalu-
ated (the reader is referred to Section 3 for the phase speed calculation)

fo db

“ 0
1 =1 T el b
s L) [ 7 a7 )

ra |
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The existence of a solitary eddy is possible if this expression equals 2.391;
if the term between the brackets is very small (i.e., if the nonlinearity due to
external features such as the mean flow and the bottom slope is small) then
¢, the nonlinearity due to the eddy amplitude, must be very large, This will
not always be possible (the particle speed must take acceptable values) and
the problem is in fact linear.

This will be the case when

“ fo db

2 3 23 0 4

= [ dz- e S Eﬂ.‘ -,
3 '—JE F ﬁLdY{m {1} (5.9)
Equation 5.9 defines a critical value for the bottom slope: in the vicinity of
this value we expect linear wave dynamics. For a slope below this critical
value, the effects of the bottom slope and of the shear flow are cooperative
if we assume (mid-ocean situations) £ > 0 and F3(—1) < 0; if the slope is
beyond this value, the effects are opposite.

G, SUMMARY

The description of the amplitude and speed of a baroclinic solitary wave
in the presence of bottom variations and interacting with a large-scale mean
flow involves an eigenvalue problem of the type

viG +'AG +BG2=0
G0 as |xl = +ea

where G(x, y) is the horizontal shape; ¢! is the order R?/I* correction to
phase speed, R being the Rosshy deformation radius and [ the characteristic
eddy scale; and 4 and B are functions of the perturbed large scale mean flow
and of 7, the vertical structure of the eddy. A is also a function of the prime
derivative of b, the bottom deviation, with respect to the north—south direc-
tion; B depends on the prime and second derivatives of b. Since A is corre-
lated to ¢! and B to the maximum amplitude of the wave, it is possible to
deduce the effects of bottom variations on these characteristics.

The special role playved by the bottom slope in the boundary conditions
allows a new type of solitary wave to exist (with eastward propagation); this
peculiarity had already been shown for linear waves by Rhines (1970).

Finally, it appears that the combined effects can be either cooperative or
antagonistic: the nonlinearity — necessary to the existence of isolated dis-
turbances — is affected by both effects. The topographic situation must be
taken into account to decide if solitary eddies may exist or if linear dynam-
ics are relevant.
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